具Holling-Ⅳ功能反应项的分数阶捕食模型的定性分析及斑图动力学
斑图动力学是当代非线性分析领域的主要研究方向之一,非线性捕食-食饵模型的动力学行为成为其研究热点。主要研究了一类分数阶扩散的捕食系统:首先建立起系统的行波解的存在性并给出系统发生Hopf分岔的条件;其次利用分数阶微分方程的定性理论和Hopf分岔理论讨论了系统局部稳定、全局稳定以及图灵分岔发生的条件;最后利用Matlab软件进行数值模拟得到了系统的空间斑图。...
Gespeichert in:
Veröffentlicht in: | 科技资讯 2023-11, Vol.21 (21), p.221-226 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 斑图动力学是当代非线性分析领域的主要研究方向之一,非线性捕食-食饵模型的动力学行为成为其研究热点。主要研究了一类分数阶扩散的捕食系统:首先建立起系统的行波解的存在性并给出系统发生Hopf分岔的条件;其次利用分数阶微分方程的定性理论和Hopf分岔理论讨论了系统局部稳定、全局稳定以及图灵分岔发生的条件;最后利用Matlab软件进行数值模拟得到了系统的空间斑图。 |
---|---|
ISSN: | 1672-3791 |
DOI: | 10.16661/j.cnki.1672-3791.2304-5042-2864 |