对话式智能导学系统研究现状及趋势

对话式智能导学系统通过模仿人类自然语言对话辅导,能够促进学习者的综合分析、定性推理等深度学习能力。本研究基于深度学习视角,用文献分析法对其概念内涵、理论基础、架构特点和学习效果等相关研究进行梳理,指出对话式智能导学系统对深度学习具有明显的促进作用,但也存在学习效率欠佳、深度学习支持不足及开发成本过高三个亟待解决的问题。为进一步推动对话式智能导学系统的发展,本研究建议重视跨学科合作、引入通用智能导学框架、考虑潜在的伦理问题,同时着重关注多模态交互方式、多维度情感计算和多代理团队学习三个新兴研究方向...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:开放教育研究 2020-08, Vol.26 (4), p.112-120
Hauptverfasser: 屈静(QU Jing), 刘凯(LIU Kai), 胡祥恩(HU Xiangen), 杨钋(YANG Po), 蒋卓轩(JIANG Zhuoxuan)
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:对话式智能导学系统通过模仿人类自然语言对话辅导,能够促进学习者的综合分析、定性推理等深度学习能力。本研究基于深度学习视角,用文献分析法对其概念内涵、理论基础、架构特点和学习效果等相关研究进行梳理,指出对话式智能导学系统对深度学习具有明显的促进作用,但也存在学习效率欠佳、深度学习支持不足及开发成本过高三个亟待解决的问题。为进一步推动对话式智能导学系统的发展,本研究建议重视跨学科合作、引入通用智能导学框架、考虑潜在的伦理问题,同时着重关注多模态交互方式、多维度情感计算和多代理团队学习三个新兴研究方向
ISSN:1007-2179
DOI:10.13966/j.cnki.kfjyyj.2020.04.013