基于残差网络的自然环境下蝴蝶种类识别

Q968; [目的]蝴蝶属鳞翅目(Lepidoptera)昆虫,其对生存环境敏感,能够作为区域生态环境的指示物种,自然环境下蝴蝶种类自动识别对生态系统稳定有重要意义.现有研究中蝴蝶种类和数量较少,且多以标本图像作为识别对象,鉴于此,本研究构建了自然环境下蝴蝶图像数据集,提出一种以残差网络为基础的蝴蝶种类识别模型LDResNet.[方法]首先,引入可变形卷积,增强网络对不同形状蝴蝶图像的特征提取能力,获得更细粒度的特征;其次,在可变形卷积后嵌入注意力机制,增大蝴蝶特征权重,降低冗余信息干扰;最后,利用改进的深度可分离卷积降低模型参数量.[结果]在自建数据集上实验,LDResNet模型取得了 87...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:昆虫学报 2023, Vol.66 (3), p.409-418
Hauptverfasser: 李飞, 赵凯旋, 严春雨, 闫建伟, 邢济春, 谢本亮
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Q968; [目的]蝴蝶属鳞翅目(Lepidoptera)昆虫,其对生存环境敏感,能够作为区域生态环境的指示物种,自然环境下蝴蝶种类自动识别对生态系统稳定有重要意义.现有研究中蝴蝶种类和数量较少,且多以标本图像作为识别对象,鉴于此,本研究构建了自然环境下蝴蝶图像数据集,提出一种以残差网络为基础的蝴蝶种类识别模型LDResNet.[方法]首先,引入可变形卷积,增强网络对不同形状蝴蝶图像的特征提取能力,获得更细粒度的特征;其次,在可变形卷积后嵌入注意力机制,增大蝴蝶特征权重,降低冗余信息干扰;最后,利用改进的深度可分离卷积降低模型参数量.[结果]在自建数据集上实验,LDResNet模型取得了 87.61%的平均识别准确率,较原始模型提升了 3.14%,模型参数量仅为1.04 MB.[结论]LDResNet模型相较其他模型,在平均识别准确率和参数量方面均有明显优势,本研究模型可为自然环境下的蝴蝶种类自动识别提供技术支持.
ISSN:0454-6296
DOI:10.16380/j.kcxb.2023.03.014