基于LS—SVM的装甲装备故障预测模型研究

针对装甲装备故障信息不足、故障预测困难等问题,通过对装甲装备的故障特点和支持向量机回归算法的分析,利用最小二乘支持向量机LS-SVM建立故障预测模型,并利用某型装甲发动机进气门盘部局部断裂故障数据对故障预测模型进行了验证.事实证明,基于最小二乘支持向量机建立故障预测模型能够较好地对装甲装备故障的趋势进行预测....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:军械工程学院学报 2017, Vol.29 (2), p.28-32
1. Verfasser: 樊泽凯 贾红丽 尹承督
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 2
container_start_page 28
container_title 军械工程学院学报
container_volume 29
creator 樊泽凯 贾红丽 尹承督
description 针对装甲装备故障信息不足、故障预测困难等问题,通过对装甲装备的故障特点和支持向量机回归算法的分析,利用最小二乘支持向量机LS-SVM建立故障预测模型,并利用某型装甲发动机进气门盘部局部断裂故障数据对故障预测模型进行了验证.事实证明,基于最小二乘支持向量机建立故障预测模型能够较好地对装甲装备故障的趋势进行预测.
doi_str_mv 10.3969/j.issn.1008-2956.2017.02.006
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_jxgcxyxb201702006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672539014</cqvip_id><wanfj_id>jxgcxyxb201702006</wanfj_id><sourcerecordid>jxgcxyxb201702006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616-5c4401a33952799beea0b70991429341cd8ca420080387deb3d7a37dc61f7fb53</originalsourceid><addsrcrecordid>eNo9jztLA0EUhadQMMT8CbGx2PXOzM7MTinBF0QsEmyX2acbdKO7iJvOIsEiYBWbIL4LbQUt8nPE3TX_wpGIzT1w-c659yC0isGkksv1rhlnWWJiANsgknGTABYmEBOAL6Da_34JNbIsdoFhKgCIXUOsuJt-Ta9a7c-Lcftgr5oMvp-G1fhNz-L5srweziY3s8dB-T4qXx6K21F1P65eP5bRYqiOsqDxp3XU2drsNHeM1v72bnOjZXgcc4N5lgVYUSoZEVK6QaDAFSAltoikFvZ821MW0c8BtYUfuNQXigpfm0MRuozW0do89lwloUoip9s7SxN90OnmkZf3c_e3J-gErtmVOesd9pLoNNb0SRofq7TvcEEYlYAt-gPJFGWB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>基于LS—SVM的装甲装备故障预测模型研究</title><source>Alma/SFX Local Collection</source><creator>樊泽凯 贾红丽 尹承督</creator><creatorcontrib>樊泽凯 贾红丽 尹承督</creatorcontrib><description>针对装甲装备故障信息不足、故障预测困难等问题,通过对装甲装备的故障特点和支持向量机回归算法的分析,利用最小二乘支持向量机LS-SVM建立故障预测模型,并利用某型装甲发动机进气门盘部局部断裂故障数据对故障预测模型进行了验证.事实证明,基于最小二乘支持向量机建立故障预测模型能够较好地对装甲装备故障的趋势进行预测.</description><identifier>ISSN: 1008-2956</identifier><identifier>DOI: 10.3969/j.issn.1008-2956.2017.02.006</identifier><language>chi</language><publisher>军械工程学院研究生管理大队,河北石家庄,050003%军械工程学院装备指挥与管理系,河北石家庄,050003</publisher><subject>回归算法 ; 故障预测模型 ; 最小二乘支持向量机 ; 装甲装备</subject><ispartof>军械工程学院学报, 2017, Vol.29 (2), p.28-32</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/82656X/82656X.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>樊泽凯 贾红丽 尹承督</creatorcontrib><title>基于LS—SVM的装甲装备故障预测模型研究</title><title>军械工程学院学报</title><addtitle>Journal of Ordnance Engineering College</addtitle><description>针对装甲装备故障信息不足、故障预测困难等问题,通过对装甲装备的故障特点和支持向量机回归算法的分析,利用最小二乘支持向量机LS-SVM建立故障预测模型,并利用某型装甲发动机进气门盘部局部断裂故障数据对故障预测模型进行了验证.事实证明,基于最小二乘支持向量机建立故障预测模型能够较好地对装甲装备故障的趋势进行预测.</description><subject>回归算法</subject><subject>故障预测模型</subject><subject>最小二乘支持向量机</subject><subject>装甲装备</subject><issn>1008-2956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9jztLA0EUhadQMMT8CbGx2PXOzM7MTinBF0QsEmyX2acbdKO7iJvOIsEiYBWbIL4LbQUt8nPE3TX_wpGIzT1w-c659yC0isGkksv1rhlnWWJiANsgknGTABYmEBOAL6Da_34JNbIsdoFhKgCIXUOsuJt-Ta9a7c-Lcftgr5oMvp-G1fhNz-L5srweziY3s8dB-T4qXx6K21F1P65eP5bRYqiOsqDxp3XU2drsNHeM1v72bnOjZXgcc4N5lgVYUSoZEVK6QaDAFSAltoikFvZ821MW0c8BtYUfuNQXigpfm0MRuozW0do89lwloUoip9s7SxN90OnmkZf3c_e3J-gErtmVOesd9pLoNNb0SRofq7TvcEEYlYAt-gPJFGWB</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>樊泽凯 贾红丽 尹承督</creator><general>军械工程学院研究生管理大队,河北石家庄,050003%军械工程学院装备指挥与管理系,河北石家庄,050003</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W93</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2017</creationdate><title>基于LS—SVM的装甲装备故障预测模型研究</title><author>樊泽凯 贾红丽 尹承督</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616-5c4401a33952799beea0b70991429341cd8ca420080387deb3d7a37dc61f7fb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2017</creationdate><topic>回归算法</topic><topic>故障预测模型</topic><topic>最小二乘支持向量机</topic><topic>装甲装备</topic><toplevel>online_resources</toplevel><creatorcontrib>樊泽凯 贾红丽 尹承督</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-社会科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>军械工程学院学报</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>樊泽凯 贾红丽 尹承督</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>基于LS—SVM的装甲装备故障预测模型研究</atitle><jtitle>军械工程学院学报</jtitle><addtitle>Journal of Ordnance Engineering College</addtitle><date>2017</date><risdate>2017</risdate><volume>29</volume><issue>2</issue><spage>28</spage><epage>32</epage><pages>28-32</pages><issn>1008-2956</issn><abstract>针对装甲装备故障信息不足、故障预测困难等问题,通过对装甲装备的故障特点和支持向量机回归算法的分析,利用最小二乘支持向量机LS-SVM建立故障预测模型,并利用某型装甲发动机进气门盘部局部断裂故障数据对故障预测模型进行了验证.事实证明,基于最小二乘支持向量机建立故障预测模型能够较好地对装甲装备故障的趋势进行预测.</abstract><pub>军械工程学院研究生管理大队,河北石家庄,050003%军械工程学院装备指挥与管理系,河北石家庄,050003</pub><doi>10.3969/j.issn.1008-2956.2017.02.006</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1008-2956
ispartof 军械工程学院学报, 2017, Vol.29 (2), p.28-32
issn 1008-2956
language chi
recordid cdi_wanfang_journals_jxgcxyxb201702006
source Alma/SFX Local Collection
subjects 回归算法
故障预测模型
最小二乘支持向量机
装甲装备
title 基于LS—SVM的装甲装备故障预测模型研究
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ELS%E2%80%94SVM%E7%9A%84%E8%A3%85%E7%94%B2%E8%A3%85%E5%A4%87%E6%95%85%E9%9A%9C%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E5%86%9B%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%E5%AD%A6%E6%8A%A5&rft.au=%E6%A8%8A%E6%B3%BD%E5%87%AF%20%E8%B4%BE%E7%BA%A2%E4%B8%BD%20%E5%B0%B9%E6%89%BF%E7%9D%A3&rft.date=2017&rft.volume=29&rft.issue=2&rft.spage=28&rft.epage=32&rft.pages=28-32&rft.issn=1008-2956&rft_id=info:doi/10.3969/j.issn.1008-2956.2017.02.006&rft_dat=%3Cwanfang_jour_chong%3Ejxgcxyxb201702006%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=672539014&rft_wanfj_id=jxgcxyxb201702006&rfr_iscdi=true