基于最优Morlet小波的全信息能量熵提取及其在滚动轴承状态监测中的应用
为利用振动信号中隐含的冲击特征成分来反映轴承性能退化趋势,综合利用小波变换技术和全信息技术,提出一种基于最优Morlet小波变换的全信息能量熵提取方法.以最小Shannon熵优化Morlet小波形状参数,通过多源振动数据的小波变换系数,利用信息熵综合反映冲击特征能量在不同频带分布差异.滚动轴承全寿命数据的应用结果表明,全信息能量熵的变化趋势能够监测轴承状态的劣化过程,而伴随的早期故障检测可以提高轴承使用的安全性....
Gespeichert in:
Veröffentlicht in: | 军械工程学院学报 2013, Vol.25 (2), p.39-42 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 为利用振动信号中隐含的冲击特征成分来反映轴承性能退化趋势,综合利用小波变换技术和全信息技术,提出一种基于最优Morlet小波变换的全信息能量熵提取方法.以最小Shannon熵优化Morlet小波形状参数,通过多源振动数据的小波变换系数,利用信息熵综合反映冲击特征能量在不同频带分布差异.滚动轴承全寿命数据的应用结果表明,全信息能量熵的变化趋势能够监测轴承状态的劣化过程,而伴随的早期故障检测可以提高轴承使用的安全性. |
---|---|
ISSN: | 1008-2956 |
DOI: | 10.3969/j.issn.1008-2956.2013.02.009 |