Effects of Semi-floating Ring Bearing Outer Clearance on the Subsynchronous Oscillation of Turbocharger Rotor

Semi-floating ring bearing(SFRB) is developed to control the vibration of turbocharger rotor. The outer clearance of SFRB affects the magnitude and frequency of nonlinear whirl motion, which is significant for the design of turbocharger. In order to explore the effects of outer clearance, a transien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of mechanical engineering 2016-09, Vol.29 (5), p.901-910
Hauptverfasser: Liang, Feng, Zhou, Ming, Xu, Quanyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semi-floating ring bearing(SFRB) is developed to control the vibration of turbocharger rotor. The outer clearance of SFRB affects the magnitude and frequency of nonlinear whirl motion, which is significant for the design of turbocharger. In order to explore the effects of outer clearance, a transient finite element analysis program for rotor and oil film bearing is built and validated by a published experimental case. The nonlinear dynamic behaviors ofrotor-SFRB system are simulated. According to the simulation results, two representative subsynchronous oscillations excited by the two hearings respectively are discovered. As the outer clearance of SFRB increases from 24 ~tm to 60 pro, the low-frequency subsynchronous oscillation experiences three steps, including a strong start, a gradual recession and a combination with the other one. At the same time, the high-frequency subsynchronous oscillation starts to appear gradually, then strengthens, and finally combines. If gravity and unbalance are neglected, the combination will start starts from high rotor speed and extents to low rotor speed, just like a "zipper". It is found from the quantitative analysis that when the outer clearance increases, the vibration amplitude experiences large value firstly, then reduction, and suddenly increasing after combination. A useful design principle of SFRB outer clearance for minimum vibration amplitude is proposed: the outer clearance value should be chosen to keep the frequency of two subsynchronous oscillations clearly separated and their amplitudes close.
ISSN:1000-9345
2192-8258
DOI:10.3901/CJME.2016.0421.057