Analysis and Prevention for Oscillation Failure of Capacitive Micro-accelerometers
As actuator of the force-rebalanced servo loop, the electrostatic force generator of the micro-accelerometer shows high nonlinearity while the interpole of the micro-electro-mechanical system(MEMS) sensor is far away from its balance position. The control system cannot rebalance itself with the limi...
Gespeichert in:
Veröffentlicht in: | Chinese journal of mechanical engineering 2010-06, Vol.23 (3), p.336-345 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As actuator of the force-rebalanced servo loop, the electrostatic force generator of the micro-accelerometer shows high nonlinearity while the interpole of the micro-electro-mechanical system(MEMS) sensor is far away from its balance position. The control system cannot rebalance itself with the limited bandwidth after an external long overload, because the characteristics of the force generator differ from normal case. Although for similar problems, solutions with cascading lead-lag blocks, with the anti-windup(AW) technology, or with the sliding-mode control, are widely reported, the problems such as performance loss or difficulty to synthesize a digital controller still remain. Based on existing researches, remedies are developed by analyzing the characteristic of the system not only near the balance position, but also corresponding to the whole moveable range of the interpole, and a new controller is proposed. The solution is compared with the common solutions of cascading lead-lag blocks method, AW methods, and sliding mode methods. Comparison results show that the proposed solution avoid performance loss, compared to cascading lead-lag blocks solution; the proposed solution is easily synthesized and implemented in the analog servo loop of the micro-accelerometer, compared to digital AW methods; at the same time, the proposed solution avoids suffering the chattering effect problem but just utilize it, compared to the sliding-mode control solution. Nevertheless, comparison results show the solution is lack of commonality, since the solution is only more suitable to micro electrostatic force-rebalance system. The SIMULINK models with and without the proposed solution, taking typical micro-accelerometer parameters, have been set up for simulation; corresponding experiments utilizing electrometric method are also conducted after the successful simulations. Simulation and experiment results verify that the micro-accelerometer will reliably return to normal operation after external long overload with the proposed solution. Therefore, it is expected to design the analog servo loop of high performance micro electrostatic force-rebalance system so as to ensure the rebalance after long overload without performance loss. |
---|---|
ISSN: | 1000-9345 2192-8258 |
DOI: | 10.3901/CJME.2010.03.336 |