An Experimental Study of Text Representation Methods for Cross-Site Purchase Preference Prediction Using the Social Text Data
Nowadays, many e-commerce websites allow users to login with their existing social networking accounts. When a new user comes to an e-commerce website, it is interesting to study whether the information from external social media platforms can be utilized to alleviate the cold-start problem. In this...
Gespeichert in:
Veröffentlicht in: | Journal of computer science and technology 2017-07, Vol.32 (4), p.828-842 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nowadays, many e-commerce websites allow users to login with their existing social networking accounts. When a new user comes to an e-commerce website, it is interesting to study whether the information from external social media platforms can be utilized to alleviate the cold-start problem. In this paper, we focus on a specific task on cross-site information sharing, i.e., leveraging the text posted by a user on the social media platform (termed as social text) to infer his/her purchase preference of product categories on an e-commerce platform. To solve the task, a key problem is how to effectively represent the social text in a way that its information can be utilized on the e-commerce platform. We study two major kinds of text representation methods for predicting cross-site purchase preference, including shallow textual features and deep textual features learned by deep neural network models. We conduct extensive experiments on a large linked dataset, and our experimental results indicate that it is promising to utilize the social text for predicting purchase preference. Specially, the deep neural network approach has shown a more powerful predictive ability when the number of categories becomes large. |
---|---|
ISSN: | 1000-9000 1860-4749 |
DOI: | 10.1007/s11390-017-1763-6 |