一种使用伪对应点生成的3D点云配准方法

TP391; 针对三维重建过程中点云配准存在的挑战性问题(如寻找对应点困难等)展开研究,充分利用源点云和目标点云的几何信息,提出了一种基于交叉注意力和伪对应点生成机制的点云配准方法——深度伪对应点生成(DeepACG).该方法采用三级网络模型,第一级是深度特征编码模块,利用交叉注意力机制交换和增强两片待配准点云之间的上下文和结构信息;第二级是伪对应点生成模块,基于软映射关系加权合成伪对应点;第三级为对应点加权和离群点过滤模块,赋予每个对应点对不同的权重值并剔除概率较低的离群点.在合成和真实数据集上进行大量实验,DeepACG方法在室内真实数据集3DMatch上的配准召回率达到92.61%;在数...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:计算机科学 2023, Vol.50 (9), p.210-219
Hauptverfasser: 柏正尧, 许祝, 张奕涵
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP391; 针对三维重建过程中点云配准存在的挑战性问题(如寻找对应点困难等)展开研究,充分利用源点云和目标点云的几何信息,提出了一种基于交叉注意力和伪对应点生成机制的点云配准方法——深度伪对应点生成(DeepACG).该方法采用三级网络模型,第一级是深度特征编码模块,利用交叉注意力机制交换和增强两片待配准点云之间的上下文和结构信息;第二级是伪对应点生成模块,基于软映射关系加权合成伪对应点;第三级为对应点加权和离群点过滤模块,赋予每个对应点对不同的权重值并剔除概率较低的离群点.在合成和真实数据集上进行大量实验,DeepACG方法在室内真实数据集3DMatch上的配准召回率达到92.61%;在数据集ModelNet40上进行目标未知的局部点云配准实验,旋转矩阵和平移向量的均方根误差分别降至0.016和0.000 09.实验结果表明,DeepACG配准精度高,鲁棒性强,配准误差低于当前主流的配准方法.
ISSN:1002-137X
DOI:10.11896/jsjkx.220700023