基于改进Self-paced Ensemble算法的浏览器指纹识别

TP393; 浏览器指纹技术凭借其无状态、跨域一致等优点,已经被许多网站应用到用户追踪、广告投放和安全验证等方面.浏览器指纹识别的过程是典型的不平衡数据的分类过程.针对当前浏览器指纹长期追踪过程中存在数据样本类不平衡导致指纹识别准确度低、长期追踪易失效等问题,提出了改进的Self-paced Ensemble(Improved SPE,ISPE)方法应用于浏览器指纹识别.对浏览器指纹样本欠采样过程和集成学习单个分类器的训练过程进行了改进,重点针对难以识别的浏览器指纹,添加类注意力机制并优化自协调因子,使分类器在训练和识别浏览器指纹的过程中更加注重边界样本的分类效果,从而提升总体的浏览器指纹识别...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:计算机科学 2023, Vol.50 (7), p.317-324
Hauptverfasser: 张德升, 陈博, 张建辉, 卜佑军, 孙重鑫, 孙嘉
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP393; 浏览器指纹技术凭借其无状态、跨域一致等优点,已经被许多网站应用到用户追踪、广告投放和安全验证等方面.浏览器指纹识别的过程是典型的不平衡数据的分类过程.针对当前浏览器指纹长期追踪过程中存在数据样本类不平衡导致指纹识别准确度低、长期追踪易失效等问题,提出了改进的Self-paced Ensemble(Improved SPE,ISPE)方法应用于浏览器指纹识别.对浏览器指纹样本欠采样过程和集成学习单个分类器的训练过程进行了改进,重点针对难以识别的浏览器指纹,添加类注意力机制并优化自协调因子,使分类器在训练和识别浏览器指纹的过程中更加注重边界样本的分类效果,从而提升总体的浏览器指纹识别准确度.在所收集的3 483条指纹和开源数据集中的15000条指纹上进行了实验,结果表明,ISPE算法在浏览器指纹匹配识别的F1-score达到95.6%,相比Bi-RNN算法提高了 16.8%.
ISSN:1002-137X
DOI:10.11896/jsjkx.220600068