基于特征融合的边缘引导乳腺超声图像分割方法
TP391; 针对乳腺超声图像边缘模糊、斑点噪声多、对比度低等问题,提出了一种融合多特征的边缘引导多尺度选择性核U-Net(Edge-guided Multi-scale Selective Kernel U-Net,EMSK U-Net)方法.EMSK U-Net采用基于U-Net的对称编解码结构可以适应小数据集医学图像分割的特点,将扩张卷积与传统卷积构成选择性核模块作用于编码路径,并提取下采样过程中的选择性核特征进行边缘检测任务,在丰富图像空间信息的同时细化边缘信息,有效缓解斑点噪声和边缘模糊的问题,在一定程度上可以提升小目标的检测精度.然后在解码路径通过多尺度特征加权聚合获取丰富的深层语...
Gespeichert in:
Veröffentlicht in: | 计算机科学 2023, Vol.50 (3), p.199-207 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP391; 针对乳腺超声图像边缘模糊、斑点噪声多、对比度低等问题,提出了一种融合多特征的边缘引导多尺度选择性核U-Net(Edge-guided Multi-scale Selective Kernel U-Net,EMSK U-Net)方法.EMSK U-Net采用基于U-Net的对称编解码结构可以适应小数据集医学图像分割的特点,将扩张卷积与传统卷积构成选择性核模块作用于编码路径,并提取下采样过程中的选择性核特征进行边缘检测任务,在丰富图像空间信息的同时细化边缘信息,有效缓解斑点噪声和边缘模糊的问题,在一定程度上可以提升小目标的检测精度.然后在解码路径通过多尺度特征加权聚合获取丰富的深层语义信息,多种信息之间相互补充,从而提升网络的分割性能.在3个公开的乳腺超声图像数据集上的实验结果表明,与其他分割方法相比,EMSK U-Net算法各项指标表现良好,分割性能有显著提升. |
---|---|
ISSN: | 1002-137X |
DOI: | 10.11896/jsjkx.211200294 |