基于向量注意力机制GoogLeNet-GMP的行人重识别方法
TP391; 为了提高行人重识别(Re-ID)的准确率和适用性,提出了一种基于向量注意力机制GoogLeNet的Re-ID方法.首先,将3组图像(锚、正、负)输入到GoogLeNet-GM P网络中,获得分段式特征向量.然后,利用空间金字塔池化(Spatial Pyramid Pooling,SPP)对来自不同金字塔等级的特征进行聚合,并引入注意力机制,通过对代表目标视觉信息的多尺度池化区域进行整合,获得多个语义等级上的可区分性特征.同时,将两个不同损失函数的混合形式作为最终损失函数.在M arket-15012和Duke-MTMC3数据集上进行实验,结果表明,相比其他优秀方法,所提方法在Ra...
Gespeichert in:
Veröffentlicht in: | 计算机科学 2022, Vol.49 (7), p.142-147 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP391; 为了提高行人重识别(Re-ID)的准确率和适用性,提出了一种基于向量注意力机制GoogLeNet的Re-ID方法.首先,将3组图像(锚、正、负)输入到GoogLeNet-GM P网络中,获得分段式特征向量.然后,利用空间金字塔池化(Spatial Pyramid Pooling,SPP)对来自不同金字塔等级的特征进行聚合,并引入注意力机制,通过对代表目标视觉信息的多尺度池化区域进行整合,获得多个语义等级上的可区分性特征.同时,将两个不同损失函数的混合形式作为最终损失函数.在M arket-15012和Duke-MTMC3数据集上进行实验,结果表明,相比其他优秀方法,所提方法在Rank-1和mAP指标方面表现更优. |
---|---|
ISSN: | 1002-137X |
DOI: | 10.11896/jsjkx.210600198 |