基于Transformer模型与关系词特征的汉语因果类复句关系自动识别
TP391; 汉语复句的语义关系丰富而复杂,复句关系自动识别是对复句语义关系的判别,是分析复句所表达意义的重要环节.因果类复句是使用最多的汉语复句,文中以二句式有标因果类复句为研究对象,通过深度学习的方法自动挖掘复句隐含的特征,同时融合了关系词这一语言学研究的显著知识.将word2vec词向量与one-hot编码的关系词特征结合作为模型的输入,利用卷积神经网络作为前馈层的transformer模型来对因果复句关系进行识别.采用文中的方法对因果类复句关系类别进行识别,实验结果的F1值达到92.13%,优于现有的对比模型,表明了该方法的有效性....
Gespeichert in:
Veröffentlicht in: | 计算机科学 2021, Vol.48 (z1), p.295-305 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP391; 汉语复句的语义关系丰富而复杂,复句关系自动识别是对复句语义关系的判别,是分析复句所表达意义的重要环节.因果类复句是使用最多的汉语复句,文中以二句式有标因果类复句为研究对象,通过深度学习的方法自动挖掘复句隐含的特征,同时融合了关系词这一语言学研究的显著知识.将word2vec词向量与one-hot编码的关系词特征结合作为模型的输入,利用卷积神经网络作为前馈层的transformer模型来对因果复句关系进行识别.采用文中的方法对因果类复句关系类别进行识别,实验结果的F1值达到92.13%,优于现有的对比模型,表明了该方法的有效性. |
---|---|
ISSN: | 1002-137X |
DOI: | 10.11896/jsjkx.200500019 |