基于特征选择的高维数据集成学习方法研究

TP181; 从集成学习的预测误差分析和偏差-方差分解可以发现使用有限的、具有正确率和差异性的基学习器进行集成学习,具有更好的泛化精度.利用信息熵构建了两阶段的特征选择集成学习方法,第一阶段先按照相对分类信息熵构建精度高于0.5的基特征集B;第二阶段先在B的基础上按互信息熵标准评判独立性,运用贪心算法构建独立的特征子集,再运用Jaccard系数评价特征子集间多样性,选取多样性的独立特征子集并构建基学习器.通过数据实验分析发现,该优化方法的执行效率和测试精度优于普通Bagging方法,在多分类的高维数据集上优化效果更好,但不适用于二分类问题....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:计算机科学 2021, Vol.48 (z1), p.250-254
Hauptverfasser: 周钢, 郭福亮
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP181; 从集成学习的预测误差分析和偏差-方差分解可以发现使用有限的、具有正确率和差异性的基学习器进行集成学习,具有更好的泛化精度.利用信息熵构建了两阶段的特征选择集成学习方法,第一阶段先按照相对分类信息熵构建精度高于0.5的基特征集B;第二阶段先在B的基础上按互信息熵标准评判独立性,运用贪心算法构建独立的特征子集,再运用Jaccard系数评价特征子集间多样性,选取多样性的独立特征子集并构建基学习器.通过数据实验分析发现,该优化方法的执行效率和测试精度优于普通Bagging方法,在多分类的高维数据集上优化效果更好,但不适用于二分类问题.
ISSN:1002-137X
DOI:10.11896/jsjkx.200700102