基于多粒度粗糙直觉犹豫模糊集的最优粒度选择方法

TP181; 为了对含有多属性的直觉犹豫模糊决策信息系统进行约简,获取最优粒度,运用多粒度粗糙集处理直觉犹豫模糊决策信息系统中的不确定信息,并对多粒度粗糙直觉犹豫模糊集的最优粒度选择方法进行了研究.首先,在直觉犹豫模糊集的基础上引入属性信息,给出粗糙直觉犹豫模糊集的概念,提出乐观、悲观多粒度粗糙直觉犹豫模糊集的下、上近似这4种模型,且研讨了它们的性质.其次,主要定义了基于悲观多粒度粗糙直觉犹豫模糊集下近似的粒度质量相似度和内、外粒度重要度的计算公式,设计了其最优粒度选择算法.最后,通过葡萄酒测评的案例,分别基于乐观、悲观多粒度粗糙直觉犹豫模糊集的下、上近似这4种情况,计算出最优粒度并进行了分析...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:计算机科学 2021, Vol.48 (10), p.98-106
Hauptverfasser: 薛占熬, 孙冰心, 侯昊东, 荆萌萌
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP181; 为了对含有多属性的直觉犹豫模糊决策信息系统进行约简,获取最优粒度,运用多粒度粗糙集处理直觉犹豫模糊决策信息系统中的不确定信息,并对多粒度粗糙直觉犹豫模糊集的最优粒度选择方法进行了研究.首先,在直觉犹豫模糊集的基础上引入属性信息,给出粗糙直觉犹豫模糊集的概念,提出乐观、悲观多粒度粗糙直觉犹豫模糊集的下、上近似这4种模型,且研讨了它们的性质.其次,主要定义了基于悲观多粒度粗糙直觉犹豫模糊集下近似的粒度质量相似度和内、外粒度重要度的计算公式,设计了其最优粒度选择算法.最后,通过葡萄酒测评的案例,分别基于乐观、悲观多粒度粗糙直觉犹豫模糊集的下、上近似这4种情况,计算出最优粒度并进行了分析,验证了该算法在直觉犹豫模糊决策信息系统中的约简是有效的.
ISSN:1002-137X
DOI:10.11896/jsjkx.200800074