基于跨列特征融合的人群计数方法
TP391; 人群计数是计算机视觉和机器学习领域中一个极具挑战性的课题.由于人群尺度变化和场景遮挡等现象会导致计数准确度不高,因此提出了一种基于跨列特征融合的人群计数方法(Cross-column Features Fusion Network,CCFNet).该方法融合了来自多列不同接受域的特征,并且结合了拥有互质扩张率的空洞卷积,因此不仅能够增大感受野,还能保证信息的连续性,从而更好地适应人群规模的巨大变化;同时引入注意力模型引导网络聚焦于图片中的头部位置,根据注意力分数图为不同位置分配不同的权重,突出人群而弱化背景,最终得到高质量的密度图.在当前主流的人群计数数据集上的对比实验中,所提方...
Gespeichert in:
Veröffentlicht in: | 计算机科学 2021, Vol.48 (6), p.118-124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP391; 人群计数是计算机视觉和机器学习领域中一个极具挑战性的课题.由于人群尺度变化和场景遮挡等现象会导致计数准确度不高,因此提出了一种基于跨列特征融合的人群计数方法(Cross-column Features Fusion Network,CCFNet).该方法融合了来自多列不同接受域的特征,并且结合了拥有互质扩张率的空洞卷积,因此不仅能够增大感受野,还能保证信息的连续性,从而更好地适应人群规模的巨大变化;同时引入注意力模型引导网络聚焦于图片中的头部位置,根据注意力分数图为不同位置分配不同的权重,突出人群而弱化背景,最终得到高质量的密度图.在当前主流的人群计数数据集上的对比实验中,所提方法的平均绝对误差(Mean Absolute Error,MAE)在ShanghaiTech数据集的A,B子集上分别达到了63.2和8.9,在UCF_CC_50数据集上达到了222.1,在WorldExpo'10数据集上达到了7.1.这表明所提方法具有更好的计数准确度,能够很好地适应不同的场景,尤其对于尺度变化较大的场景,效果优于以往的大多数算法. |
---|---|
ISSN: | 1002-137X |