A new approach for automated image segmentation based on simplified PCNN

Pulse-coupled neural network (PCNN) is a novel neural network, which has been widely used in image segmentation. However, there are still some limitations, such as trial-and-error parameter settings and manual selection of the optimal results. This paper puts forward a new method based on the simpli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:计算机辅助绘图设计与制造(英文版) 2013, Vol.23 (1), p.21-26
1. Verfasser: ZHENG Qianqian SHU Zhibiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulse-coupled neural network (PCNN) is a novel neural network, which has been widely used in image segmentation. However, there are still some limitations, such as trial-and-error parameter settings and manual selection of the optimal results. This paper puts forward a new method based on the simplified PCNN model for automatic image segmentation. By calculating the un- iformity measure of the corresponding image at each process of iteration, the optimal segmentation result is obtained when the max- imum value of the uniformity measure is achieved. Experimental results show that the proposed method can automatically achieve better segmentation result and has a common adaptability.
ISSN:1003-4951