Profile of the culturable microbiome capable of producing acyl-homoserine lactone in the tobacco phyllosphere
Bacterial populations coexisting in the phyllosphere niche have important effects on plant health. Quorum sensing (QS) allows bacteria to communicate via diffusible signal molecules, but QS-dependent behaviors in phyllosphere bacterial populations are poorly understood. We investigate the dense and...
Gespeichert in:
Veröffentlicht in: | Journal of environmental sciences (China) 2013-02, Vol.25 (2), p.357-366 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacterial populations coexisting in the phyllosphere niche have important effects on plant health. Quorum sensing (QS) allows bacteria to communicate via diffusible signal molecules, but QS-dependent behaviors in phyllosphere bacterial populations are poorly understood. We investigate the dense and diverse N-acyl-homoserine lactone (AHL)-producing phyllosphere bacteria living on tobacco leaf surfaces via a culture-dependent method and 16S rRNA gene sequencing. Our results indicated that approximately 7.9%–11.7% of the culturable leaf-associated bacteria have the ability to produce AHL based on the assays using whole-cell biosensors. Sequencing of the 16S rRNA gene assigned the AHL-producing strains to two phylogenetic groups, with Gammaproteobacteria (93%) as the predominant group, followed by Alphaproteobacteria. All of the AHL-producing Alphaproteobacteria were affiliated with the genus Rhizobium, whereas the AHL-producing bacteria belonging to the Gammaproteobacteria mainly fell within the genera Pseudomonas, Acinetobacter, Citrobacter, Enterobacter, Pantoea and Serratia. The bioassays of supernatant extracts revealed that a portion of the strains have a remarkable AHL profile for AHL induction activity using the two different biosensors, and one compound in the active extract of a representative isolate, NTL223, corresponded to 3-oxo-hexanoyl-homoserine lactone. A large population size and diversity of bacteria capable of AHL-driven QS were found to cohabit on leaves, implying that cross-communication based AHL-type QS may be common in the phyllosphere. Furthermore, this study provides a general snapshot of a potential valuable application of AHL-producing bacteria inhabiting leaves for their presumable ecological roles in the phyllosphere. |
---|---|
ISSN: | 1001-0742 1878-7320 |
DOI: | 10.1016/S1001-0742(12)60027-8 |