Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement

This study investigated the emission characteristics of ultra.fine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35)×10^8 cm^-3. The on-board measurement results il...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental sciences (China) 2012-11, Vol.24 (11), p.1972-1978
Hauptverfasser: Huang, Cheng, Lou, Diming, Hu, Zhiyuan, Tan, Piqiang, Yao, Di, Hu, Wei, Li, Peng, Ren, Jin, Chen, Changhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the emission characteristics of ultra.fine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35)×10^8 cm^-3. The on-board measurement results illustrated that the ultra_fine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 ×10^6 cm^-3 and 2.7 ×10^7 cm^-3 under decelerating and idling operations and as high as 5.0×10^8 cm^-3 under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.
ISSN:1001-0742
1878-7320
DOI:10.1016/S1001-0742(11)61038-3