Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron

Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation. The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental sciences (China) 2011-01, Vol.23 (8), p.1286-1292
Hauptverfasser: Wang, Yu, Zhou, Dongmei, Wang, Yujun, Zhu, Xiangdong, Jin, Shengyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation. The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated. The results showed that the dechlorination of 4-C1BP by NZVI increased with decreased solution pH. When the initial pH value was 4.0, 5.5, 6.8, and 9.0, the de.chlorination efficiencies of 4-CIBP after 48 hr were 53.8%, 47.8%, 35.7%, and 35.6%, respectively. The presence of humic acid inhibited the reduction of 4-CIBP in the first 4 hi', and then significantly accelerated the dechlorination by reaching 86.3% in 48 hr. Divalent metal ions, Co2+, Cu2+, and Ni2+, were reduced and formed bimetals with NZVI, thereby enhanced the dechlorination of 4-CIBP. The dechlorination percentages of 4-CIBP in the presence of 0.1 mmol/L Co2~, Cuz~ and Niz~ were 66.1%, 66.0% and 64.6% in 48 hr, and then increased to 67.9%, 71.3% and 73.5%, after 96 hr respectively. The dechlorination kinetics of 4-C1BP by the NZVI in all cases followed pseudo-first order model. The results provide a basis for better understanding of the dechlorination mechanisms of PCBs in real environment.
ISSN:1001-0742
1878-7320
DOI:10.1016/S1001-0742(10)60543-8