A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China

Land use regression (LUR) model was employed to predict the spatial concentration distribution of NO2 and PM10 in the Tianjin region based on the environmental air quality monitoring data. Four multiple linear regression (MLR) equations were established based on the most significant variables for NO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental sciences (China) 2010-09, Vol.22 (9), p.1364-1373
Hauptverfasser: Chen, Li, Baili, Zhipeng, Kong, Shaofei, Han, Bin, You, Yan, Ding, Xiao, Du, Shiyong, Liu, Aixia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Land use regression (LUR) model was employed to predict the spatial concentration distribution of NO2 and PM10 in the Tianjin region based on the environmental air quality monitoring data. Four multiple linear regression (MLR) equations were established based on the most significant variables for NO2 in heating season (R2 = 0.74), and non-heating season (R2 = 0.61) in the whole study area; and PM10 in heating season (R2 = 0.72), and non-heating season (R2 = 0.49). Maps of spatial concentration distribution for NO2 and PM10 were obtained based on the MLR equations (resolution is 10 krn). Intercepts of MLR equations were 0.050 (NOz, heating season), 0.035 (NO2, non-heating season), 0.068 (PM10, heating season), and 0.092 (PM10, non-beating season) in the whole study area. In the central area of Tianjin region, the intercepts were 0.042 (NO2, heating season), 0.043 (NO2, non-heating season), 0.087 (PM10, heating season), and 0.096 (PMl0, non-heating season). These intercept values might imply an area's background concentrations. Predicted result derived from LUR model in the central area was better than that in the whole study area. Rz values increased 0.09 (heating season) and 0.18 (non-heating season) for NO2, and 0.08 (heating season) and 0.04 (non-heating season) for PMl0. In terms of R2, LUR model performed more effectively in heating season than non-heating season in the study area and gave a better result for NOz compared with PM10.
ISSN:1001-0742
1878-7320
DOI:10.1016/s1001-0742(09)60263-1