Removal of citrate and hypophosphite binary components using Fenton, photo-Fenton and electro-Fenton processes
Both citrate and hypophosphite in aqueous solution were degraded by advanced oxidation processes (Fe^2+/H2O2, UV/Fe^2+/H2O2, and electrolysis/Fe^2+/H2O2) in this study. Comparison of these techniques in oxidation efficiency was undertaken. It was found that Fenton process could not completely degrad...
Gespeichert in:
Veröffentlicht in: | Journal of environmental sciences (China) 2009, Vol.21 (1), p.35-40 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Both citrate and hypophosphite in aqueous solution were degraded by advanced oxidation processes (Fe^2+/H2O2, UV/Fe^2+/H2O2, and electrolysis/Fe^2+/H2O2) in this study. Comparison of these techniques in oxidation efficiency was undertaken. It was found that Fenton process could not completely degrade citrate in the presence of hypophosphite since it caused a series inhibition. Therefore, UV light (photo-Fenton) or electron current (electro-Fenton) was applied to improve the degradation efficiency of the Fenton process. Results showed that both photo-Fenton and electro-Fenton processes could overcome the inhibition of hypophosphite, especially the electro-Fenton. |
---|---|
ISSN: | 1001-0742 1878-7320 |
DOI: | 10.1016/S1001-0742(09)60008-5 |