基于特征量优选与ICA-SVM的变压器故障诊断模型
为了弥补现有变压器故障诊断方法在油中气体分析(DGA)特征量选取和诊断模型方面的不足,采用IEC三比值法中的3种气体比值作为变压器故障诊断的特征量.同时从含有8种油中溶解气体中任意3种及以上的共254种气体组合中筛选出准确率最高的3组最优DGA特征气体组合,将其作为对照组特征量.然后采用帝国竞争算法(ICA)优化支持向量机的变压器故障诊断模型(ICA-SVM),与标准支持向量机(SVM)法、粒子群优化向量机(PSO-SVM)以及IEC三比值法进行对比.实例结果表明:三气体比值特征量相比3组最优DGA气体组合,故障识别准确率提高了10%左右;ICA-SVM故障诊断模型相比标准SVM法、PSO-S...
Gespeichert in:
Veröffentlicht in: | 电力系统保护与控制 2019-09, Vol.47 (17), p.163-170 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 为了弥补现有变压器故障诊断方法在油中气体分析(DGA)特征量选取和诊断模型方面的不足,采用IEC三比值法中的3种气体比值作为变压器故障诊断的特征量.同时从含有8种油中溶解气体中任意3种及以上的共254种气体组合中筛选出准确率最高的3组最优DGA特征气体组合,将其作为对照组特征量.然后采用帝国竞争算法(ICA)优化支持向量机的变压器故障诊断模型(ICA-SVM),与标准支持向量机(SVM)法、粒子群优化向量机(PSO-SVM)以及IEC三比值法进行对比.实例结果表明:三气体比值特征量相比3组最优DGA气体组合,故障识别准确率提高了10%左右;ICA-SVM故障诊断模型相比标准SVM法、PSO-SVM和IEC三比值法故障识别准确率提高了7%~35%;综合三比值特征量与ICA-SVM故障诊断模型的准确率为89.3%,相较其他几种方法准确率提升了7%~35%.结果验证了该方法的有效性和准确性. |
---|---|
ISSN: | 1674-3415 |
DOI: | 10.19783/j.cnki.pspc.181259 |