短期负荷局部线性嵌入流形学习预测法

考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法。将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂的变化规律,建立高维预测模型。利用流形学习理论对建立的高维模型进行有效降维,从而提取高维空间数据的固有属性和整体几何规律,揭示其蕴含的有效信息。采用局部线性嵌入法(locallyl Inearembedding,LLE)对24维负荷数据进行非绳l生降维,在低维空间内进行负荷预测,再用LLE重构得到24个时刻的预测值。仿真结果表明本文提出方法相比于传统一维分量预测法精度更高、速度更快。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电力系统保护与控制 2012, Vol.40 (7), p.25-30
1. Verfasser: 黄静 肖先勇 刘旭娜
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法。将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂的变化规律,建立高维预测模型。利用流形学习理论对建立的高维模型进行有效降维,从而提取高维空间数据的固有属性和整体几何规律,揭示其蕴含的有效信息。采用局部线性嵌入法(locallyl Inearembedding,LLE)对24维负荷数据进行非绳l生降维,在低维空间内进行负荷预测,再用LLE重构得到24个时刻的预测值。仿真结果表明本文提出方法相比于传统一维分量预测法精度更高、速度更快。
ISSN:1674-3415
DOI:10.3969/j.issn.1674-3415.2012.07.005