A characteristic study of humic acids isolated from Arctic fjord sediments

Humic substances are ubiquitous natural materials found in sediments as a product of biochemical transformation reactions representing a significant proportion of organic carbon cycle on earth. This study involves the analysis of humic substances with special emphasis on humic acids (HAs) in sedimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:极地科学进展(英文版) 2019, Vol.30 (1), p.24-34
Hauptverfasser: Jennees MATHEW, Aswathy SHAJI, Anu GOPINATH, Kottekkattu Padinchati KRISHNAN, Sanil Vadakkan LOUIS, Anoop Pullarkkat PRADEEP
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humic substances are ubiquitous natural materials found in sediments as a product of biochemical transformation reactions representing a significant proportion of organic carbon cycle on earth. This study involves the analysis of humic substances with special emphasis on humic acids (HAs) in sediments collected from the Kongsfjorden System of Arctic region in June, 2017. The characterization of the isolated HAs were done using various spectroscopic techniques viz. UV-visible, Fluorescence, FTIR and NMR. Isolated HAs were also undergone for elemental analysis along with other characterization. The UV spectral analysis results with a lower E4/E6 ratio suggesting the presence of HAs with high degree of aromaticity and condensation. Indications for the presence of hydroxyl, methyl, methylene, carbonyl, carboxyl, phenol, alcohol and amide groups were obtained from the FTIR spectrums of HAs. NMR spectral characteristics also confirm the presence of OH group as well as the presence of CH protons adjacent to C=X, wereXcan be any electronegative element. This also confirms the presence of carbonyl group which is also evident in the FTIR spectral studies. Presence of aliphatic regions slightly more dominated with long chain and/or alicyclic moieties rather than methyl groups was also inferred from the results of NMR.
ISSN:1674-9928
DOI:10.13679/j.advps.2019.1.00024