Phosphorus speciation, transformation and benthic processes with implications for environmental impacts in the aquaculture area of Rushan Bay

Phosphorus (P) is an essential nutrient for many organisms in the ocean, which plays a central role in the stability of ecosystems and the evolution of the environment. The distribution, occurrence and source-sink process of P in offshore waters are highly influenced by mariculture activities. P tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta oceanologica Sinica 2023-08, Vol.42 (8), p.99-112
Hauptverfasser: Feng, Yao, Liu, Jun, Zhang, Aijun, Wang, Yibin, Wang, Lu, Lv, Zongqing, Ran, Xiangbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphorus (P) is an essential nutrient for many organisms in the ocean, which plays a central role in the stability of ecosystems and the evolution of the environment. The distribution, occurrence and source-sink process of P in offshore waters are highly influenced by mariculture activities. P transformation in water-sediment system is the key process in P cycling, however, the mechanism is poorly documented in the coastal sea which is influenced by human activities. Based on the comprehensive surveys in the adjacent waters outside Rushan Bay in May, July and August 2014 and February 2015, the form and transformation of P in the suspended particulate matter (SPM) and surface sediment were analyzed. The results showed that contents of total P, authigenic P and organic P of SPM increased with the increase in distance from the shoreline off Rushan Bay, and the detrital-P decreased. The partition coefficient of P between water and SPM was related to the chemical activity of different forms of P, and a higher reactivity of inorganic P associated with SPM was observed. Hypoxia induced by mariculture changes the distribution and morphological composition of P in SPM and sediment in this typical aquaculture area, which can result in a conversion of sink to source of P in the sediment, thereby having a significant impact on the regional nutrient budget and associated with eutrophication.
ISSN:0253-505X
1869-1099
DOI:10.1007/s13131-023-2235-1