Aliphatic biomarker signatures of early Oligocene?early Mio-cene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter

The geochemical signatures of fifty-four rock samples and three supplementary drill stem test (DST) oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin (CQB) were analysed. Reconstruction of the early Oligocene?early Miocene (36–16 Ma) palaeovegetation and source analyses of org...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:海洋学报(英文版) 2023, Vol.42 (3), p.1-18
Hauptverfasser: Min Xu, Dujie Hou, Xiong Cheng, Jun Gan, Xinde Xu, Gang Liang, Wenjing Ding
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The geochemical signatures of fifty-four rock samples and three supplementary drill stem test (DST) oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin (CQB) were analysed. Reconstruction of the early Oligocene?early Miocene (36–16 Ma) palaeovegetation and source analyses of organic matter (OM) were conducted using aliphatic biomarkers in ancient sediments and DST oils. Both the interpreted aquatic and terrigenous OM contributed to the CQB source rocks (SRs) but had varying relative proportions. The four distribution patterns derived from n-alkanes, terpanes, and steranes are representative of four OM composition models of the Yacheng-Sanya SRs, including model A, model B, model C, and model D, which were classified based on the increasing contribution from terrigenous OM relative to aquatic OM. Some terrigenous higher plant- derived biomarkers, including oleanane, des-A-oleanane, C29 ααα 20R sterane, bicadinanes, the C19/(C19 + C23) tricyclic terpane ratio, and other n-alkane-derived ratios suggest that angiosperms had increased proportions in the palaeoflora from early Oligocene to early Miocene, and the bloom of terrigenous higher plants was observed during deposition of upper Lingshui Formation to lower Sanya Formation. These findings are consistent with the incremental total organic carbon and free hydrocarbons + potential hydrocarbons (S1 + S2) in the lower Lingshui- lower Sanya strata with a significant enrichment of OM in the E3l1-N1s2 shales. The maturity- and environment- sensitive aliphatic parameters of the CQB SRs and DST oils suggest that all the samples have predominantly reached their early oil-generation windows but have not exceeded the peak oil windows, except for some immature Sanya Formation shales. In addition, most of the OM in the analysed samples was characterised by mixed OM contributions under anoxic to sub-anoxic conditions. Furthermore, terrestrial-dominant SRs were interpreted to have developed mainly in the Lingshui-Sanya formations and were deposited in sub-oxic to oxic environments, compared to the anoxic to sub-anoxic conditions of the Yacheng Formation.
ISSN:0253-505X