A hybrid forecasting model for depth-averaged current velocities of underwater gliders
In this paper, we propose a hybrid forecasting model to improve the forecasting accuracy for depth-averaged current velocities (DACVs) of underwater gliders. The hybrid model is based on a discrete wavelet transform (DWT), a deep belief network (DBN), and a least squares support vector machine (LSSV...
Gespeichert in:
Veröffentlicht in: | Acta oceanologica Sinica 2022-09, Vol.41 (9), p.182-191 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a hybrid forecasting model to improve the forecasting accuracy for depth-averaged current velocities (DACVs) of underwater gliders. The hybrid model is based on a discrete wavelet transform (DWT), a deep belief network (DBN), and a least squares support vector machine (LSSVM). The original DACV series are first decomposed into several high- and one low-frequency subseries by DWT. Then, DBN is used for high-frequency component forecasting, and the LSSVM model is adopted for low-frequency subseries. The effectiveness of the proposed model is verified by two groups of DACV data from sea trials in the South China Sea. Based on four general error criteria, the forecast performance of the proposed model is demonstrated. The comparison models include some well-recognized single models and some related hybrid models. The performance of the proposed model outperformed those of the other methods indicated above. |
---|---|
ISSN: | 0253-505X 1869-1099 |
DOI: | 10.1007/s13131-022-1994-4 |