Doping copper ions in a metal-organic framework (UiO-66-NH2): Location effect examined by ultrafast spectroscopy

We constructed two types of copper-doped metal-organic framework (MOF), i.e., Cu@UiO- 66-NH2 and Cu-UiO-66-NH2. In the former, Cu2+ ions are impregnated in the pore space of the amine-functionalized, Zr-based UiO-66-NH2; while in the latter, Cu2+ ions are in-corporated to form a bimetal-center MOF,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemical physics 2020-08, Vol.33 (4), p.394-400
Hauptverfasser: Liu, Jia, Jiang, Shen-long, Zhang, Qun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We constructed two types of copper-doped metal-organic framework (MOF), i.e., Cu@UiO- 66-NH2 and Cu-UiO-66-NH2. In the former, Cu2+ ions are impregnated in the pore space of the amine-functionalized, Zr-based UiO-66-NH2; while in the latter, Cu2+ ions are in-corporated to form a bimetal-center MOF, with Zr4+ being partially replaced by Cu2+ in the Zr−O oxo-clusters. Ultrafast spectroscopy revealed that the photoinduced relaxation kinetics associated with the ligand-to-cluster charge-transfer state is promoted for both Cu-doped MOFs relative to undoped one, but in a sequence of Cu-UiO-66-NH2>Cu@UiO-66-NH2>UiO-66-NH2. Such a sequence turned to be in line with the trend observed in the visible-light photocatalytic hydrogen evolution activity tests on the three MOFs. These findings highlighted the subtle effect of copper-doping location in this Zr-based MOF system, further suggesting that rational engineering of the specific metal-doping location in alike MOF systems to promote the photoinduced charge separation and hence suppress the detrimental charge recombination therein is beneficial for achieving improved performances in MOF-based photocatalysis.
ISSN:1674-0068
2327-2244
DOI:10.1063/1674-0068/cjcp2005070