星载激光雷达GLAS与TM光学遥感联合反演森林叶面积指数

通过对地球科学激光测高系统(Geoscience Laser Altimeter System,GLAS)波形数据进行高斯分解,提取精确的波形特征信息,计算出GLAS波形数据激光穿透指数(LPI),基于LPI提出GLAS数据反演叶面积指数(LAI)的新方法,建立了GLAS数据反演森林LAI的模型(R2=0.84,RMSE=0.64),并用留一交叉验证法(LOOCV)对反演模型的可靠性进行了验证,结果表明,该模型没有过度拟合,具有很好的泛化能力,最后通过人工神经网络融合GLAS与TM(Thematic Mapper,专题制图仪)遥感数据实现区域尺度森林LAI反演,用25个实测LAI对反演精度进行...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:红外与毫米波学报 2015, Vol.34 (2), p.243-249
1. Verfasser: 骆社周 王成 习晓环 聂胜 夏少波 万怡平
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:通过对地球科学激光测高系统(Geoscience Laser Altimeter System,GLAS)波形数据进行高斯分解,提取精确的波形特征信息,计算出GLAS波形数据激光穿透指数(LPI),基于LPI提出GLAS数据反演叶面积指数(LAI)的新方法,建立了GLAS数据反演森林LAI的模型(R2=0.84,RMSE=0.64),并用留一交叉验证法(LOOCV)对反演模型的可靠性进行了验证,结果表明,该模型没有过度拟合,具有很好的泛化能力,最后通过人工神经网络融合GLAS与TM(Thematic Mapper,专题制图仪)遥感数据实现区域尺度森林LAI反演,用25个实测LAI对反演精度进行了验证,研究表明反演LAI与实测值较为接近,精度较高(R2=0.76,RMSE=0.69),为生态环境研究提供精确的输入参数,为GLAS数据大区域高精度LAI反演提供新的方法和思路.
ISSN:1001-9014
DOI:10.11972/j.issn.1001-9014.2015.02.020