基于生成MRF和局部统计特性的红外弱小目标检测算法
红外复杂背景中的弱小目标检测问题可看作是马尔可夫随机场理论框架下红外图像中背景与目标的二元分类标记问题.基于马尔可夫随机场后验概率模型,提出利用先验的目标信杂比信息和图像局部统计特性构建观测图像后验概率模型的方法,并采用经典ICM (Iterated conditional mode)方法对图像最优标记结果进行估计.仿真试验结果表明,算法在保证目标标记结果准确率的同时,有效降低了背景的误标记概率;且由于采用局部统计特性进行建模,算法有效降低了模型参数与标记结果间的关联性,提高了最优标记估计的收敛速度....
Gespeichert in:
Veröffentlicht in: | 红外与毫米波学报 2013, Vol.32 (5), p.431-436 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 红外复杂背景中的弱小目标检测问题可看作是马尔可夫随机场理论框架下红外图像中背景与目标的二元分类标记问题.基于马尔可夫随机场后验概率模型,提出利用先验的目标信杂比信息和图像局部统计特性构建观测图像后验概率模型的方法,并采用经典ICM (Iterated conditional mode)方法对图像最优标记结果进行估计.仿真试验结果表明,算法在保证目标标记结果准确率的同时,有效降低了背景的误标记概率;且由于采用局部统计特性进行建模,算法有效降低了模型参数与标记结果间的关联性,提高了最优标记估计的收敛速度. |
---|---|
ISSN: | 1001-9014 |
DOI: | 10.3724/SP.J.1010.2013.00431 |