改进的概率假设密度滤波多目标检测前跟踪算法
基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研究.从标准PHD滤波出发,更为合理地推导出PHD-TBD算法的粒子权重更新计算表达式,实现对目标数的准确估计;同时利用贝叶斯滤波理论,推导出基于量测的新生粒子概率密度采样函数,完成对目标的快速发现.仿真实验表明,与现有的PHD—TBD相比,改进算法能够适应目标扩散情况,准确估计目标数目,并实现对目标的快速发现和位...
Gespeichert in:
Veröffentlicht in: | 红外与毫米波学报 2012, Vol.31 (5), p.475-480 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研究.从标准PHD滤波出发,更为合理地推导出PHD-TBD算法的粒子权重更新计算表达式,实现对目标数的准确估计;同时利用贝叶斯滤波理论,推导出基于量测的新生粒子概率密度采样函数,完成对目标的快速发现.仿真实验表明,与现有的PHD—TBD相比,改进算法能够适应目标扩散情况,准确估计目标数目,并实现对目标的快速发现和位置准确估计. |
---|---|
ISSN: | 1001-9014 |
DOI: | 10.3724/SP.J.1010.2012.00475 |