基于可见光/近红外光谱技术的倒伏水稻识别研究

TP79%S43; 运用可见光/近红外光谱仪获取正常的和受稻飞虱、穗颈瘟危害而倒伏的水稻冠层光谱反射率,采用主成分分析(PCA)方法对反射率光谱进行降维处理,提取2个主分量光谱.其中,第一主分量PC1代表了水稻冠层的光谱特性,第二主分量PC2反映了倒伏水稻的冠层光谱变化信息.将前2个主分量作为支持向量分类机(SVC)的输入向量,建立分类模型.结果表明,对受稻飞虱危害倒伏的水稻验证数据的识别精度为100%,对受穗颈瘟危害倒伏的水稻验证数据的识别精度为90.9%.研究表明可见光/近红外光谱可能是一种有效的倒伏水稻识别方法....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:红外与毫米波学报 2009, Vol.28 (5), p.342-345
Hauptverfasser: 刘占宇, 王大成, 李波, 黄敬峰
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP79%S43; 运用可见光/近红外光谱仪获取正常的和受稻飞虱、穗颈瘟危害而倒伏的水稻冠层光谱反射率,采用主成分分析(PCA)方法对反射率光谱进行降维处理,提取2个主分量光谱.其中,第一主分量PC1代表了水稻冠层的光谱特性,第二主分量PC2反映了倒伏水稻的冠层光谱变化信息.将前2个主分量作为支持向量分类机(SVC)的输入向量,建立分类模型.结果表明,对受稻飞虱危害倒伏的水稻验证数据的识别精度为100%,对受穗颈瘟危害倒伏的水稻验证数据的识别精度为90.9%.研究表明可见光/近红外光谱可能是一种有效的倒伏水稻识别方法.
ISSN:1001-9014
DOI:10.3321/j.issn:1001-9014.2009.05.005