基于HMM-PNN模型的助推段目标类型识别

针对卫星视野下导弹目标的识别问题,将经典隐马尔科夫模型(HMM)识别算法应用在助推段目标类型识别上并加以改进。首先,分析了通用弹道助推段运动特性,确定了不同射程导弹的分类依据。其次,针对HMM模型时序特性差异较小而引起的识别率低的问题,引入概率神经网络(PNN)与HMM模型相结合的结构算法,该方法整合了HMM模型的时间序列数据处理能力和PNN的自学习能力、贝叶斯决策理论,对不同射程导弹目标实现了分类识别。仿真实验结果表明该算法是一种有效的导弹目标识别算法,识别率优于传统的HMM模型方法,误判率较低,且易于工程实现。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:航天电子对抗 2015, Vol.31 (4), p.22-25
1. Verfasser: 王普 樊建鹏 程洪玮 司马端
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:针对卫星视野下导弹目标的识别问题,将经典隐马尔科夫模型(HMM)识别算法应用在助推段目标类型识别上并加以改进。首先,分析了通用弹道助推段运动特性,确定了不同射程导弹的分类依据。其次,针对HMM模型时序特性差异较小而引起的识别率低的问题,引入概率神经网络(PNN)与HMM模型相结合的结构算法,该方法整合了HMM模型的时间序列数据处理能力和PNN的自学习能力、贝叶斯决策理论,对不同射程导弹目标实现了分类识别。仿真实验结果表明该算法是一种有效的导弹目标识别算法,识别率优于传统的HMM模型方法,误判率较低,且易于工程实现。
ISSN:1673-2421