Nonlinear finite time attitude control of flexible spacecraft based on a novel output redefinition method

A finite time attitude controller is designed for a flexible spacecraft based on a novel output redefinition method, in this paper. To make the flexible appendages vibration suppression effective, the appendage tip-point is selected as the output. First, a novel output redefinition method is propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2023-11, Vol.36 (11), p.373-385
Hauptverfasser: ESMAEILZADEH, Seyed Majid, ZEYGHAMI, Mohammad Sadegh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A finite time attitude controller is designed for a flexible spacecraft based on a novel output redefinition method, in this paper. To make the flexible appendages vibration suppression effective, the appendage tip-point is selected as the output. First, a novel output redefinition method is proposed to overcome the non-minimum phase property of the dynamic model. The proposed method not only makes the system model minimum phase but also improves the attitude control system performance. Consequently, the precise attitude pointing and stabilization are achieved. Then, a nonlinear finite time H∞ controller is designed based on the backstepping approach. For the situation where the modal variables measurements are not available, a modal observer is also designed. The simulation results show the effectiveness of the proposed method in the presence of the model uncertainties and environmental disturbances.
ISSN:1000-9361
DOI:10.1016/j.cja.2023.08.001