High-entropy (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 thermal barrier coating material with significantly enhanced fracture toughness
Poor fracture toughness leads to premature failure of La2(Zr0.75Ce0.25)2O7 (LCZ) thermal barrier coatings in an elevated temperature service environment. A novel coating material, namely (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 (LNSGY) based on the high-entropy concept, was successfully fabrica...
Gespeichert in:
Veröffentlicht in: | Chinese journal of aeronautics 2023-04, Vol.36 (4), p.556-564 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poor fracture toughness leads to premature failure of La2(Zr0.75Ce0.25)2O7 (LCZ) thermal barrier coatings in an elevated temperature service environment. A novel coating material, namely (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 (LNSGY) based on the high-entropy concept, was successfully fabricated by solid-state sintering. The microstructure of LCZ and LNSGY was investigated by X-Ray Diffraction (XRD), Raman Spectrometer (RS), Transmission Electronic Microscopy (TEM) and Scanning Electron Microscopy (SEM). The fracture toughness of the LCZ and LNSGY ceramics was evaluated. The LNSGY has excellent high-temperature phase stability, and the grain size of LNSGY ceramic is smaller than that of LCZ ceramic at an elevated temperature due to the sluggish diffusion effect. Compared with LCZ (fracture toughness is (1.4 ± 0.1) MPa∙m1/2), the fracture toughness of LNSGY is significantly enhanced (fracture toughness is (2.0 ± 0.3) MPa∙m1/2). Therefore, the LNSGY can be a promising advanced thermal barrier coating material in the future. |
---|---|
ISSN: | 1000-9361 |
DOI: | 10.1016/j.cja.2022.12.001 |