Predictions of nuclear charge radii based on the convolutional neural network

In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network (CNN) combines the isospin and pairing effects to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear science and techniques 2023-10, Vol.34 (10), p.83-90, Article 152
Hauptverfasser: Cao, Ying-Yu, Guo, Jian-You, Zhou, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 10
container_start_page 83
container_title Nuclear science and techniques
container_volume 34
creator Cao, Ying-Yu
Guo, Jian-You
Zhou, Bo
description In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network (CNN) combines the isospin and pairing effects to describe the charge radii of nuclei with A ≥ 39 and Z ≥ 20. The developed neural network achieved a root mean square (RMS) deviation of 0.0195 fm for a dataset with 928 nuclei. Specifically, the CNN reproduced the trend of the inverted parabolic behavior and odd–even staggering observed in the calcium isotopic chain, demonstrating reliable predictive capability.
doi_str_mv 10.1007/s41365-023-01308-x
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hjs_e202310008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hjs_e202310008</wanfj_id><sourcerecordid>hjs_e202310008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-91c15c8348a803e1b87a4690ff5de8d90b25fcaf015b3a5f9faf66c73820db553</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5g8sRme7ThxRlTxJRXBALPlOHabEmxkJxT-PW6DxMZ0l3uu3jsInVO4pADVVSooLwUBxglQDpJ8HaAZYxQIp0V1iGa5RYmEgh2jk5Q2AEVRinqGHp-jbTszdMEnHBz2o-mtjtisdVxZHHXbdbjRybY4eDysLTbBf4Z-3BG6x96OcR_DNsS3U3TkdJ_s2W_O0evtzcviniyf7h4W10tiOGMDqamhwkheSC2BW9rIShdlDc6J1sq2hoYJZ7QDKhquhauddmVpKi4ZtI0QfI4upt2t9k77ldqEMeZzklpvkrIse8gPg8xFNhVNDClF69RH7N51_FYU1M6cmsypTKi9OfWVIT5BKZf9ysa_-X-oH6F_cho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predictions of nuclear charge radii based on the convolutional neural network</title><source>SpringerLink</source><source>Alma/SFX Local Collection</source><creator>Cao, Ying-Yu ; Guo, Jian-You ; Zhou, Bo</creator><creatorcontrib>Cao, Ying-Yu ; Guo, Jian-You ; Zhou, Bo</creatorcontrib><description>In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network (CNN) combines the isospin and pairing effects to describe the charge radii of nuclei with A ≥ 39 and Z ≥ 20. The developed neural network achieved a root mean square (RMS) deviation of 0.0195 fm for a dataset with 928 nuclei. Specifically, the CNN reproduced the trend of the inverted parabolic behavior and odd–even staggering observed in the calcium isotopic chain, demonstrating reliable predictive capability.</description><identifier>ISSN: 1001-8042</identifier><identifier>EISSN: 2210-3147</identifier><identifier>DOI: 10.1007/s41365-023-01308-x</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Beam Physics ; Nuclear Energy ; Particle Acceleration and Detection ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy</subject><ispartof>Nuclear science and techniques, 2023-10, Vol.34 (10), p.83-90, Article 152</ispartof><rights>The Author(s), under exclusive licence to China Science Publishing &amp; Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-91c15c8348a803e1b87a4690ff5de8d90b25fcaf015b3a5f9faf66c73820db553</citedby><cites>FETCH-LOGICAL-c322t-91c15c8348a803e1b87a4690ff5de8d90b25fcaf015b3a5f9faf66c73820db553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hjs-e/hjs-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41365-023-01308-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s41365-023-01308-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Cao, Ying-Yu</creatorcontrib><creatorcontrib>Guo, Jian-You</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><title>Predictions of nuclear charge radii based on the convolutional neural network</title><title>Nuclear science and techniques</title><addtitle>NUCL SCI TECH</addtitle><description>In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network (CNN) combines the isospin and pairing effects to describe the charge radii of nuclei with A ≥ 39 and Z ≥ 20. The developed neural network achieved a root mean square (RMS) deviation of 0.0195 fm for a dataset with 928 nuclei. Specifically, the CNN reproduced the trend of the inverted parabolic behavior and odd–even staggering observed in the calcium isotopic chain, demonstrating reliable predictive capability.</description><subject>Beam Physics</subject><subject>Nuclear Energy</subject><subject>Particle Acceleration and Detection</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>1001-8042</issn><issn>2210-3147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5g8sRme7ThxRlTxJRXBALPlOHabEmxkJxT-PW6DxMZ0l3uu3jsInVO4pADVVSooLwUBxglQDpJ8HaAZYxQIp0V1iGa5RYmEgh2jk5Q2AEVRinqGHp-jbTszdMEnHBz2o-mtjtisdVxZHHXbdbjRybY4eDysLTbBf4Z-3BG6x96OcR_DNsS3U3TkdJ_s2W_O0evtzcviniyf7h4W10tiOGMDqamhwkheSC2BW9rIShdlDc6J1sq2hoYJZ7QDKhquhauddmVpKi4ZtI0QfI4upt2t9k77ldqEMeZzklpvkrIse8gPg8xFNhVNDClF69RH7N51_FYU1M6cmsypTKi9OfWVIT5BKZf9ysa_-X-oH6F_cho</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Cao, Ying-Yu</creator><creator>Guo, Jian-You</creator><creator>Zhou, Bo</creator><general>Springer Nature Singapore</general><general>Shanghai Research Center for Theoretical Nuclear Physics,NSFC and Fudan University,Shanghai 200438,China</general><general>Key Laboratory of Nuclear Physics and Ion-beam Application(MOE),Institute of Modern Physics,Fudan University,Shanghai 200433,China%School of Physics and Optoelectronics Engineering,Anhui University,Hefei 230601,China%Key Laboratory of Nuclear Physics and Ion-beam Application(MOE),Institute of Modern Physics,Fudan University,Shanghai 200433,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20231001</creationdate><title>Predictions of nuclear charge radii based on the convolutional neural network</title><author>Cao, Ying-Yu ; Guo, Jian-You ; Zhou, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-91c15c8348a803e1b87a4690ff5de8d90b25fcaf015b3a5f9faf66c73820db553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Beam Physics</topic><topic>Nuclear Energy</topic><topic>Particle Acceleration and Detection</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ying-Yu</creatorcontrib><creatorcontrib>Guo, Jian-You</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Nuclear science and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Ying-Yu</au><au>Guo, Jian-You</au><au>Zhou, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictions of nuclear charge radii based on the convolutional neural network</atitle><jtitle>Nuclear science and techniques</jtitle><stitle>NUCL SCI TECH</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>34</volume><issue>10</issue><spage>83</spage><epage>90</epage><pages>83-90</pages><artnum>152</artnum><issn>1001-8042</issn><eissn>2210-3147</eissn><abstract>In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network (CNN) combines the isospin and pairing effects to describe the charge radii of nuclei with A ≥ 39 and Z ≥ 20. The developed neural network achieved a root mean square (RMS) deviation of 0.0195 fm for a dataset with 928 nuclei. Specifically, the CNN reproduced the trend of the inverted parabolic behavior and odd–even staggering observed in the calcium isotopic chain, demonstrating reliable predictive capability.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s41365-023-01308-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-8042
ispartof Nuclear science and techniques, 2023-10, Vol.34 (10), p.83-90, Article 152
issn 1001-8042
2210-3147
language eng
recordid cdi_wanfang_journals_hjs_e202310008
source SpringerLink; Alma/SFX Local Collection
subjects Beam Physics
Nuclear Energy
Particle Acceleration and Detection
Particle and Nuclear Physics
Physics
Physics and Astronomy
title Predictions of nuclear charge radii based on the convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictions%20of%20nuclear%20charge%20radii%20based%20on%20the%20convolutional%20neural%20network&rft.jtitle=Nuclear%20science%20and%20techniques&rft.au=Cao,%20Ying-Yu&rft.date=2023-10-01&rft.volume=34&rft.issue=10&rft.spage=83&rft.epage=90&rft.pages=83-90&rft.artnum=152&rft.issn=1001-8042&rft.eissn=2210-3147&rft_id=info:doi/10.1007/s41365-023-01308-x&rft_dat=%3Cwanfang_jour_cross%3Ehjs_e202310008%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hjs_e202310008&rfr_iscdi=true