Predictions of nuclear charge radii based on the convolutional neural network

In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network (CNN) combines the isospin and pairing effects to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear science and techniques 2023-10, Vol.34 (10), p.83-90, Article 152
Hauptverfasser: Cao, Ying-Yu, Guo, Jian-You, Zhou, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network (CNN) combines the isospin and pairing effects to describe the charge radii of nuclei with A ≥ 39 and Z ≥ 20. The developed neural network achieved a root mean square (RMS) deviation of 0.0195 fm for a dataset with 928 nuclei. Specifically, the CNN reproduced the trend of the inverted parabolic behavior and odd–even staggering observed in the calcium isotopic chain, demonstrating reliable predictive capability.
ISSN:1001-8042
2210-3147
DOI:10.1007/s41365-023-01308-x