Establishment and study of a polarized X-ray radiation facility
With the advancement in X-ray astronomical detection technology, various celestial polarization detection projects have been initiated. To meet the calibration requirements of polarimeters on the ground, a polarized X-ray radiation facility was designed for this study. The design was based on the pr...
Gespeichert in:
Veröffentlicht in: | Nuclear science and techniques 2023-08, Vol.34 (8), p.67-76, Article 120 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the advancement in X-ray astronomical detection technology, various celestial polarization detection projects have been initiated. To meet the calibration requirements of polarimeters on the ground, a polarized X-ray radiation facility was designed for this study. The design was based on the principle that X-rays incident at 45° on a crystal produce polarized X-rays, and a second crystal was used to measure the polarization of the X-rays produced by the facility after rotation. The effects of different diaphragm sizes on the degree of polarization were compared, and the facility produced X-rays with polarization degrees of up to 99.55 ± 0.96% using LiF200 and LiF220 crystals. This result revealed that the polarization of incident X-rays is one of the factors affecting the diffraction efficiency of crystals. The replacement of different crystals can satisfy the calibration requirements of polarized X-ray detectors with more energy points in the energy range (4–10) keV. In the future, the facility should be placed in a vacuum environment to meet the calibration requirements at lower energies. |
---|---|
ISSN: | 1001-8042 2210-3147 |
DOI: | 10.1007/s41365-023-01277-1 |