Scalability of 3D deterministic particle transport on the Intel MIC architecture

The key to large-scale parallel solutions of deterministic particle transport problem is single-node computation performance. Hence, single-node computation is often parallelized on multi-core or many-core computer architectures. However, the number of on-chip cores grows quickly with the scale-down...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:核技术(英文版) 2015-10, Vol.26 (5), p.88-97
1. Verfasser: 王庆林 刘杰 龚春叶 邢座程
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The key to large-scale parallel solutions of deterministic particle transport problem is single-node computation performance. Hence, single-node computation is often parallelized on multi-core or many-core computer architectures. However, the number of on-chip cores grows quickly with the scale-down of feature size in semiconductor technology. In this paper, we present a scalability investigation of one energy group time-independent deterministic discrete ordinates neutron transport in 3D Cartesian geometry(Sweep3D) on Intel’s Many Integrated Core(MIC) architecture, which can provide up to 62 cores with four hardware threads per core now and will own up to 72 in the future. The parallel programming model, Open MP, and vector intrinsic functions are used to exploit thread parallelism and vector parallelism for the discrete ordinates method, respectively. The results on a 57-core MIC coprocessor show that the implementation of Sweep3 D on MIC has good scalability in performance. In addition, the application of the Roofline model to assess the implementation and performance comparison between MIC and Tesla K20 C Graphics Processing Unit(GPU) are also reported.
ISSN:1001-8042
2210-3147
DOI:10.13538/j.1001-8042/nst.26.050502