Computation and parameterization of normalized glandular dose using Geant4

The average absorbed dose in glandular tissue is the most appropriate parameter for the assessment of the radiation-induced risk during breast imaging. The aims of this work concern:(1) the investigation of the variation effect of any related update to photon cross-section data-bases on the computat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:核技术(英文版) 2015-06, Vol.26 (3), p.51-56
1. Verfasser: Omrane Kadri Mohammed Ali Alnafea Khaled Shamma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The average absorbed dose in glandular tissue is the most appropriate parameter for the assessment of the radiation-induced risk during breast imaging. The aims of this work concern:(1) the investigation of the variation effect of any related update to photon cross-section data-bases on the computation of the normalized glandular dose(Dg N) for mammography quality control tests and(2) the proposition of a parameterization method leading to provide Dg N values function of the breast thickness(T) and the particle energy(E) instead of E alone, as normally known. We analyzed the change effect of the photon cross-section data-bases on the computation of Dg N. Those coefficients, generated using the Geant4 Monte Carlo toolkit, were studied over a range of compressed breast thickness of 2–8 cm for monoenergetic(1–120 ke V by 1 ke V intervals) and polyenergetic(23–35 k Vp by 2 k Vp intervals) X-ray beams. Moreover, breast tissue composition ranging from about0% glandular(about 100% adipose) to 100% glandular(0% adipose) was also covered. The successful parameterization of Dg N look-up table function of the breast thickness and energy, will compact its analytical form without loss of accuracy. All parameterization fits resulted in r2 values of 0.999 or better.
ISSN:1001-8042
2210-3147
DOI:10.13538/j.1001-8042/nst.26.030303