Monte Carlo simulation to key parameters of a compensated neutron logger
A compensated neutron logger (CNL) is designed by using Monte-Carlo simulation for lead shield thickness, near-to-far detector spacing range, source-to-detector spacing range, and detector's effective length. The calculated results indicate that the optimum conditions for CNL are 80-ram thick lead p...
Gespeichert in:
Veröffentlicht in: | Nuclear science and techniques 2009-12, Vol.20 (6), p.359-362 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A compensated neutron logger (CNL) is designed by using Monte-Carlo simulation for lead shield thickness, near-to-far detector spacing range, source-to-detector spacing range, and detector's effective length. The calculated results indicate that the optimum conditions for CNL are 80-ram thick lead plus 1-cm thick LiOH shield in front of the near detector, 250 mm for the near-to-far detector distance (Ar), and the source-to-detector distance (r) of 90mm. Simultaneously, some conclusion also obtained here, near/far detector counting response ratio (R) increases with the effective length of detector, R increases with the porosity for oil and water sandstones, and the oil sandstone is a bit greater than water sandstone. |
---|---|
ISSN: | 1001-8042 2210-3147 |