Efficient Soft-Decision Maximum-Likelihood Decoding of BCH Code in the GNSS

Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:哈尔滨工业大学学报(英文版) 2015-02, Vol.22 (1), p.54-58
1. Verfasser: Jinhai Sun Jinhai Li Haiyang Liu Feng Wang Yuepeng Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.
ISSN:1005-9113
DOI:10.11916/j.issn.1005-9113.2015.01.008