Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle

Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle (AUV) in an unknown underwater environment during exploration process. Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and application 2019-06, Vol.18 (2), p.228-238
Hauptverfasser: Bhopale, Prashant, Kazi, Faruk, Singh, Navdeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle (AUV) in an unknown underwater environment during exploration process. Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accurate mathematical model of AUV and may fail due to parametric uncertainties, disturbance, or plant model mismatch. On the other hand, model-free reinforcement learning (RL) algorithm can be designed using actual behavior of AUV plant in an unknown environment and the learned control may not get affected by model uncertainties like a classical control approach. Unlike model-based control model-free RL based controller does not require to manually tune controller with the changing environment. A standard RL based one-step Q-learning based control can be utilized for obstacle avoidance but it has tendency to explore all possible actions at given state which may increase number of collision. Hence a modified Q-learning based control approach is proposed to deal with these problems in unknown environment. Furthermore, function approximation is utilized using neural network (NN) to overcome the continuous states and large state-space problems which arise in RL-based controller design. The proposed modified Q-learning algorithm is validated using MATLAB simulations by comparing it with standard Q-learning algorithm for single obstacle avoidance. Also, the same algorithm is utilized to deal with multiple obstacle avoidance problems.
ISSN:1671-9433
1993-5048
DOI:10.1007/s11804-019-00089-3