Classification of underwater still objects based on multi-field features and SVM
A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes ti...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and application 2007-03, Vol.6 (1), p.36-40 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | Journal of marine science and application |
container_volume | 6 |
creator | Tian, Jie Xue, Shan-hua Huang, Hai-ning Zhang, Chun-hua |
description | A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes time-domain, spectral, time-frequency distribution and bi-spectral features. Underwater target recognition can be considered as a problem of small sample recognition. SVM algorithm is appropriate to this kind of problems because of its outstanding generalizability. The SVM is contrasted with a Gaussian classifier and a k-nearest classifier in some experiments using real data of lake or sea trial. The experimental results indicate that SVM is better than the others two. |
doi_str_mv | 10.1007/s11804-007-6042-4 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hebgcdxxb_e200701006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>23958470</cqvip_id><wanfj_id>hebgcdxxb_e200701006</wanfj_id><sourcerecordid>hebgcdxxb_e200701006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-43691525b8d3539e08c9c4ff014eaee2f098b02d98857bd62f375be1959e7b3e3</originalsourceid><addsrcrecordid>eNqFkc1OHDEQhEdRkEIgD5CbxSGnGPw7to9olQQkEEhArpbtaS_eeGfAnhGbt49Xyz2nrsNX3a2qrvtKyTklRF1USjURuEncE8Gw-NAdU2M4lkToj033imIjOP_Ufa51Q0ives6Pu_tVdrWmmIKb0zSiKaJlHKC8uRkKqnPKGU1-A2GuyLsKA2rQdslzwjFBHlAENy8FKnLjgB5-3552R9HlCl_e50n39PPH4-oK39z9ul5d3uDAFZ2x4L2hkkmvBy65AaKDCSJGQgU4ABaJ0Z6wwWgtlR96FrmSHqiRBpTnwE-674e9b26MblzbzbSUsV20z-DXYdjtvAXW8iAtn77h3w74S5leF6iz3aYaIGc3wrRUy4xumDT_BanpmTRCNZAewFCmWgtE-1LS1pW_lhK778QeOrF7ue_EiuY5e_c8T-P6NbW3vQt_YspgGTdSC0X4P6Ckick</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19625947</pqid></control><display><type>article</type><title>Classification of underwater still objects based on multi-field features and SVM</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tian, Jie ; Xue, Shan-hua ; Huang, Hai-ning ; Zhang, Chun-hua</creator><creatorcontrib>Tian, Jie ; Xue, Shan-hua ; Huang, Hai-ning ; Zhang, Chun-hua</creatorcontrib><description>A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes time-domain, spectral, time-frequency distribution and bi-spectral features. Underwater target recognition can be considered as a problem of small sample recognition. SVM algorithm is appropriate to this kind of problems because of its outstanding generalizability. The SVM is contrasted with a Gaussian classifier and a k-nearest classifier in some experiments using real data of lake or sea trial. The experimental results indicate that SVM is better than the others two.</description><identifier>ISSN: 1671-9433</identifier><identifier>EISSN: 1993-5048</identifier><identifier>DOI: 10.1007/s11804-007-6042-4</identifier><language>eng</language><publisher>Institute of Acoustics, Chinese Academy of Sciences, Beijing 100080, China</publisher><subject>多场特征提取 ; 支持向量机 ; 水下静止目标</subject><ispartof>Journal of marine science and application, 2007-03, Vol.6 (1), p.36-40</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-43691525b8d3539e08c9c4ff014eaee2f098b02d98857bd62f375be1959e7b3e3</citedby><cites>FETCH-LOGICAL-c371t-43691525b8d3539e08c9c4ff014eaee2f098b02d98857bd62f375be1959e7b3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86145A/86145A.jpg</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Xue, Shan-hua</creatorcontrib><creatorcontrib>Huang, Hai-ning</creatorcontrib><creatorcontrib>Zhang, Chun-hua</creatorcontrib><title>Classification of underwater still objects based on multi-field features and SVM</title><title>Journal of marine science and application</title><addtitle>Journal of Marine Science and Application</addtitle><description>A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes time-domain, spectral, time-frequency distribution and bi-spectral features. Underwater target recognition can be considered as a problem of small sample recognition. SVM algorithm is appropriate to this kind of problems because of its outstanding generalizability. The SVM is contrasted with a Gaussian classifier and a k-nearest classifier in some experiments using real data of lake or sea trial. The experimental results indicate that SVM is better than the others two.</description><subject>多场特征提取</subject><subject>支持向量机</subject><subject>水下静止目标</subject><issn>1671-9433</issn><issn>1993-5048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OHDEQhEdRkEIgD5CbxSGnGPw7to9olQQkEEhArpbtaS_eeGfAnhGbt49Xyz2nrsNX3a2qrvtKyTklRF1USjURuEncE8Gw-NAdU2M4lkToj033imIjOP_Ufa51Q0ives6Pu_tVdrWmmIKb0zSiKaJlHKC8uRkKqnPKGU1-A2GuyLsKA2rQdslzwjFBHlAENy8FKnLjgB5-3552R9HlCl_e50n39PPH4-oK39z9ul5d3uDAFZ2x4L2hkkmvBy65AaKDCSJGQgU4ABaJ0Z6wwWgtlR96FrmSHqiRBpTnwE-674e9b26MblzbzbSUsV20z-DXYdjtvAXW8iAtn77h3w74S5leF6iz3aYaIGc3wrRUy4xumDT_BanpmTRCNZAewFCmWgtE-1LS1pW_lhK778QeOrF7ue_EiuY5e_c8T-P6NbW3vQt_YspgGTdSC0X4P6Ckick</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Tian, Jie</creator><creator>Xue, Shan-hua</creator><creator>Huang, Hai-ning</creator><creator>Zhang, Chun-hua</creator><general>Institute of Acoustics, Chinese Academy of Sciences, Beijing 100080, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20070301</creationdate><title>Classification of underwater still objects based on multi-field features and SVM</title><author>Tian, Jie ; Xue, Shan-hua ; Huang, Hai-ning ; Zhang, Chun-hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-43691525b8d3539e08c9c4ff014eaee2f098b02d98857bd62f375be1959e7b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>多场特征提取</topic><topic>支持向量机</topic><topic>水下静止目标</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Xue, Shan-hua</creatorcontrib><creatorcontrib>Huang, Hai-ning</creatorcontrib><creatorcontrib>Zhang, Chun-hua</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of marine science and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Jie</au><au>Xue, Shan-hua</au><au>Huang, Hai-ning</au><au>Zhang, Chun-hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of underwater still objects based on multi-field features and SVM</atitle><jtitle>Journal of marine science and application</jtitle><addtitle>Journal of Marine Science and Application</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>6</volume><issue>1</issue><spage>36</spage><epage>40</epage><pages>36-40</pages><issn>1671-9433</issn><eissn>1993-5048</eissn><abstract>A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes time-domain, spectral, time-frequency distribution and bi-spectral features. Underwater target recognition can be considered as a problem of small sample recognition. SVM algorithm is appropriate to this kind of problems because of its outstanding generalizability. The SVM is contrasted with a Gaussian classifier and a k-nearest classifier in some experiments using real data of lake or sea trial. The experimental results indicate that SVM is better than the others two.</abstract><pub>Institute of Acoustics, Chinese Academy of Sciences, Beijing 100080, China</pub><doi>10.1007/s11804-007-6042-4</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-9433 |
ispartof | Journal of marine science and application, 2007-03, Vol.6 (1), p.36-40 |
issn | 1671-9433 1993-5048 |
language | eng |
recordid | cdi_wanfang_journals_hebgcdxxb_e200701006 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | 多场特征提取 支持向量机 水下静止目标 |
title | Classification of underwater still objects based on multi-field features and SVM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20underwater%20still%20objects%20based%20on%20multi-field%20features%20and%20SVM&rft.jtitle=Journal%20of%20marine%20science%20and%20application&rft.au=Tian,%20Jie&rft.date=2007-03-01&rft.volume=6&rft.issue=1&rft.spage=36&rft.epage=40&rft.pages=36-40&rft.issn=1671-9433&rft.eissn=1993-5048&rft_id=info:doi/10.1007/s11804-007-6042-4&rft_dat=%3Cwanfang_jour_proqu%3Ehebgcdxxb_e200701006%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19625947&rft_id=info:pmid/&rft_cqvip_id=23958470&rft_wanfj_id=hebgcdxxb_e200701006&rfr_iscdi=true |