Classification of underwater still objects based on multi-field features and SVM
A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes ti...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and application 2007-03, Vol.6 (1), p.36-40 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes time-domain, spectral, time-frequency distribution and bi-spectral features. Underwater target recognition can be considered as a problem of small sample recognition. SVM algorithm is appropriate to this kind of problems because of its outstanding generalizability. The SVM is contrasted with a Gaussian classifier and a k-nearest classifier in some experiments using real data of lake or sea trial. The experimental results indicate that SVM is better than the others two. |
---|---|
ISSN: | 1671-9433 1993-5048 |
DOI: | 10.1007/s11804-007-6042-4 |