基于支持向量机的高速公路事故实时风险预测

U492.8; 以高速公路事故数据、交通流数据和天气数据为基础,以交通流为事故主要影响因素,建模预测高速公路事故实时风险.将事故记录作为病例组,采用病例对照方法来配对匹配实验样本,通过随机森林算法从众多变量中筛选出对事故风险影响最重要的10个特征变量,以支持向量机建立模型预测事故实时风险.实验表明,通过随机森林筛选重要的特征变量,再使用支持向量机建模预测事故风险具有可行性,且以高斯核、Sigmoid核作为支持向量机的核函数比线性核函数和多项式核函数时分类准确性更高;其中,高斯核下支持向量机模型对事故风险预判的准确率达73.20%,对正常交通流的分类达91.44%....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:工业工程 2021, Vol.24 (4), p.143-149
Hauptverfasser: 樊博, 马筱栎, 雷小诗, 马新露
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:U492.8; 以高速公路事故数据、交通流数据和天气数据为基础,以交通流为事故主要影响因素,建模预测高速公路事故实时风险.将事故记录作为病例组,采用病例对照方法来配对匹配实验样本,通过随机森林算法从众多变量中筛选出对事故风险影响最重要的10个特征变量,以支持向量机建立模型预测事故实时风险.实验表明,通过随机森林筛选重要的特征变量,再使用支持向量机建模预测事故风险具有可行性,且以高斯核、Sigmoid核作为支持向量机的核函数比线性核函数和多项式核函数时分类准确性更高;其中,高斯核下支持向量机模型对事故风险预判的准确率达73.20%,对正常交通流的分类达91.44%.
ISSN:1007-7375
DOI:10.3969/j.issn.1007-7375.2021.04.017