符号网络预测准确度及时间代价的优化
符号网络的预测准确度越来越高,但是时间复杂度也越来越难以接受。必须寻找有效预测方法,既保证算法预测准确度高,同时时间复杂度低。本文设计了一个优化算法,使用平衡环算法预测符号,利用函数拟合方法分别拟合预测准确度与步长、时间复杂度与步长的函数关系,分析随步长增加预测准确度与时间复杂度的关系并提出优化方案。实验显示,本文的优化算法能够有效获得预测准确度与时间复杂度的关系。本文可供设计符号预测算法的研究者参考。...
Gespeichert in:
Veröffentlicht in: | 工业工程 2017, Vol.20 (1), p.59-64 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 符号网络的预测准确度越来越高,但是时间复杂度也越来越难以接受。必须寻找有效预测方法,既保证算法预测准确度高,同时时间复杂度低。本文设计了一个优化算法,使用平衡环算法预测符号,利用函数拟合方法分别拟合预测准确度与步长、时间复杂度与步长的函数关系,分析随步长增加预测准确度与时间复杂度的关系并提出优化方案。实验显示,本文的优化算法能够有效获得预测准确度与时间复杂度的关系。本文可供设计符号预测算法的研究者参考。 |
---|---|
ISSN: | 1007-7375 |
DOI: | 10.3969/j.issn.1007-7375.e16-4208 |