基于主成分分析与支持向量机的汽柴油需求预测
综合分析了影响汽柴油消费需求的关键因素,并针对其具有自相关性、复杂性、数据量大等特点,采用主成分分析法对样本数据进行降维处理,形成新的样本集。对支持向量机预测模型进行改进,在其基础之上引入时序动态因子,将上年的汽柴油需求历史数据作为时序反馈因子引入模型,从而形成新的动态反馈拟合模型,建立相应的需求预测模型。对1996~2012年的汽柴油需求预测进行实例研究,并将本文中所提方法的预测结果与灰色GM(1,1)模型、BP神经网络模型进行对比分析。结果表明本文中的主成分分析与改进支持向量机预测方法相对于GM(1,1)模型其预测误差均值分别降低了72.7%和74.86%,相对于BP神经网络其预测误差均值...
Gespeichert in:
Veröffentlicht in: | 工业工程 2015, Vol.18 (2), p.20-27 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 综合分析了影响汽柴油消费需求的关键因素,并针对其具有自相关性、复杂性、数据量大等特点,采用主成分分析法对样本数据进行降维处理,形成新的样本集。对支持向量机预测模型进行改进,在其基础之上引入时序动态因子,将上年的汽柴油需求历史数据作为时序反馈因子引入模型,从而形成新的动态反馈拟合模型,建立相应的需求预测模型。对1996~2012年的汽柴油需求预测进行实例研究,并将本文中所提方法的预测结果与灰色GM(1,1)模型、BP神经网络模型进行对比分析。结果表明本文中的主成分分析与改进支持向量机预测方法相对于GM(1,1)模型其预测误差均值分别降低了72.7%和74.86%,相对于BP神经网络其预测误差均值分别降低了81.3%和81.66%,从而证明了此方法的有效性和优越性。 |
---|---|
ISSN: | 1007-7375 |
DOI: | 10.3969/j.issn.1007-7375.2015.02.004 |