Bias Free Threshold Estimation for Jump Intensity Function
In this paper, combining the threshold technique, we reconstruct Nadaraya-Watson estimation using Gamma asymmetric kernels for the unknown jump intensity function of a diffusion process with finite activity jumps. Under mild conditions, we obtain the asymptotic normality for the proposed estimator....
Gespeichert in:
Veröffentlicht in: | Applied Mathematics-A Journal of Chinese Universities 2019-09, Vol.34 (3), p.309-325 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, combining the threshold technique, we reconstruct Nadaraya-Watson estimation using Gamma asymmetric kernels for the unknown jump intensity function of a diffusion process with finite activity jumps. Under mild conditions, we obtain the asymptotic normality for the proposed estimator. Moreover, we have verified the better finite-sampling properties such as bias correction and efficiency gains of the underlying estimator compared with other nonparametric estimators through a Monte Carlo experiment. |
---|---|
ISSN: | 1005-1031 1993-0445 |
DOI: | 10.1007/s11766-019-3630-4 |