Bias Free Threshold Estimation for Jump Intensity Function

In this paper, combining the threshold technique, we reconstruct Nadaraya-Watson estimation using Gamma asymmetric kernels for the unknown jump intensity function of a diffusion process with finite activity jumps. Under mild conditions, we obtain the asymptotic normality for the proposed estimator....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematics-A Journal of Chinese Universities 2019-09, Vol.34 (3), p.309-325
Hauptverfasser: Lin, Yi-wei, Li, Zhen-wei, Song, Yu-ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, combining the threshold technique, we reconstruct Nadaraya-Watson estimation using Gamma asymmetric kernels for the unknown jump intensity function of a diffusion process with finite activity jumps. Under mild conditions, we obtain the asymptotic normality for the proposed estimator. Moreover, we have verified the better finite-sampling properties such as bias correction and efficiency gains of the underlying estimator compared with other nonparametric estimators through a Monte Carlo experiment.
ISSN:1005-1031
1993-0445
DOI:10.1007/s11766-019-3630-4